Put something in here

Publications

Authors in bold are/were members of the Horticultural Crop Physiology Laboratory.

For more information visit our Google Scholar account.

  1. Clavijo-Herrera, J.; Chaparro, J.X.; Rossi, L.; Sarkhosh, A. 2025. Physiological Performance and Nutrient Uptake of a Low-Chill Peach Tree Grafted on Different Rootstocks under a Subtropical Climate. International Journal of Fruit Science. In press.
  2. Heck, M.L.; Larson, N.R.; Locatelli, G.; Cochrane, E.F.; Coradetti, S.; Hallman, L.M.; Johnson, L.; Estes III, W.C.; Makar, A.; Demirden, N.; Pitino, M.; Shatters Jr., R.G.; Adair Jr., R.C.; Giles, F.; Fox, J.P.; Stuehler, D.; Hodge, J.; Hoffman, J.; Blake, V.; Ulysse, L.; Ramirez-Barrera, L.; McKenna, R.; Thompson, L.; Bennett, L.; Larrea-Sarmiento, A.; Olmedo-Velarde, A.; Barkee, S.; Weeks-Purdy, C.; Zambon, F.T.; Shende, K.; Rossi, L.; D’Elia, T.; Ritenour, M.A.; Scully, B.T.; Niedz, R.P. 2025. Grove-First: A Generalizable Framework to Evaluate Translational Solutions to Citrus Greening  and Other Perennial Crop Diseases. Plant Disease. In press.
  3. Fox, J.P.; Locatelli, G.; Hussain, K.; Hallman, L.M.; Alcon-Bou, N.; Estes III, W.C.; Ferrarezi, R.S.; Rossi, L. 2025. Comparison of Different Plant Sap, Conventional Leaf and Soil Nutritional Analyses in Citrus Groves under Citrus Greening Conditions. HortTechnology 35 (5), 810-820. https://doi.org/10.21273/HORTTECH05697-25
  4. Clavijo-Herrera, J.; Thetford, M.; Williamson, J.G.; Mulvaney, M.J.; Rossi, L.; Sarkhosh, A. 2025. Adaptation and Early Establishment of Olive Trees (Olea europaea L.) under the Humid Subtropical Climate of the Southeastern United States. HortScience 60 (8), 1379-1388. https://doi.org/10.21273/HORTSCI18660-25
  5. Bryant, M.T.; Rossi, L.; Mu, R.; Cao, Z.; Ma, X. 2025. Synergistic Effects of Polystyrene Nanoplastics and Cadmium on the Metabolic Processes and Their Accumulation in Hydroponically Grown Lettuce (Lactuca sativa). Journal of Agricultural and Food Chemistry 73, 16157−16164. https://doi.org/10.1021/acs.jafc.5c03215
  6. Alcon-Bou, N.; Guzman, S.M.; Rossi L. 2025. Citrus Salinity Tolerance: A Systematic Review of Cultivar Selection Trials, Grafted versus Non-Grafted Trees, and Scion Contributions. HortScience 60 (6), 994-1002. https://doi.org/10.21273/HORTSCI18580-25
  7. Hussain, K.; Fox, J.P.; Rossi, L. 2025. Root morphological and anatomical responses of olive tree cultivars ‘Oliana’ and ‘Lecciana’ under salinity stress. Scientia Horticulturae 344, 114108: https://doi.org/10.1016/j.scienta.2025.114108
  8. Hallman, L.M.; Fox, J.P.; Beany, A.H.; Wright, A.L.; Rossi, L. 2025, Evaluation of legume cover crop species for citrus production in Southeast Florida. HortScience 60 (1) 73-80: https://doi.org/10.21273/HORTSCI18276-24
  9. Hussain, K.; Fox, J.P.; Ma, X.; Rossi, L. 2024. Impact of polystyrene nanoplastics on physiology, nutrient uptake, and root system architecture of aeroponically grown citrus plants. NanoImpact 37, 100536: https://doi.org/10.1016/j.impact.2024.100536
  10. Fox, J.P.; Quinones, J.E.; Hussain, K.; Ma, X.; Rossi, L. 2024. Influences of cerium oxide nanoparticles and salinity on common bean (Phaseolus vulgaris) growth, physiology, and root system architectural and anatomical traits. NanoImpact 36: 100535. https://doi.org/10.1016/j.impact.2024.100535
  11. Ozbudak, E.; Carrillo-Tarazona, Y.; Diaz, E.A.; Zambon, F.T.; Stuehler, D.S.; Rossi, L.; Peres, N.; Raffaele,S.; Cano, L.M. 2024. Transcriptome analysis of Colletotrichum nymphaeae-Strawberry interaction reveals in planta expressed genes associated with virulence. Frontiers in Plant Sciences 15. https://doi.org/10.3389/fpls.2024.1390926
  12. Hallman, L.M.; Fox, J.P.; Paoli, J.P.; Hussain, K.; Wright, A.L.; Rossi, L. 2024. Soil organic matter influences citrus growth, nutrient uptake, and root system architecture. HortScience 59(12): 1781–1788. https://doi.org/10.21273/HORTSCI18225-24
  13. Hallman, L.M.; Fox, J.P.; Rossi, L. 2024. Use of cover crops in Florida’s citrus industry: History and resurgence, current practices, challenges, and opportunities. HortTechnology 34 (5), 539–554. https://doi.org/10.21273/HORTTECH05476-24
  14. Li, X.; Ayub, M.A.; Fox, J.-P.; Shen, S.; Rossi, L. 2024. Nutrient uptake, growth, and physiology of Chinese cabbage (Brassica rapa L. ssp. pekinensis) varieties under NaCl stress. Soil & Environment 43 (1): 1-13. https://doi.org/10.25252/SE/2024/243362  
  15. Chinyukwi, T.; Kadyampakeni, D.; Rossi, L. 2024. Optimization of macronutrient and micronutrient concentrations in roots and leaves for Florida HLB-affected sweet orange trees. Journal of Plant Nutrition, 47:2, 226-239, https://doi.org/10.1080/01904167.2023.2275068  
  16. Santiago, J.M.; Hallman, L.M.; Fox, J.-P.; Pitino, M.; Shatters, R.G.; Cano, L.M.; Rossi, L. 2023. Impacts of oak mulch amendments on rhizosphere microbiome of citrus trees grown in Florida flatwood soils. Microorganisms 11(11), 2764; https://doi.org/10.3390/microorganisms11112764  
  17. Kadyampakeni, D.M.; Chinyukwi, T.; Kwakye, S.; Rossi, L. 2023. Varied macro- and micronutrient fertilization rates impact root growth and distribution and fruit yield of huanglongbing-affected Valencia orange trees. HortScience, 58(12), 1498-1507; https://doi.org/10.21273/HORTSCI17372-23  
  18. Hallman, L.M.; Santiago, J.M.; Fox, J.-P.; Pitino, M.; Shatters, R.G.; Rossi L. 2023. Use of hardwood mulch applications to improve soil characteristics of Alfisols used in Florida citrus production. Frontiers in Soil Science 3. https://doi.org/10.3389/fsoil.2023.1200847  
  19. Hallman, L.M.; Kadyampakeni, D.M.; Ferrarezi, R.S.; Wright, A.L.; Ritenour, M.A.; Rossi, L. 2023. Uptake of micronutrients in severely HLB-affected grapefruit trees grown on Florida Indian River flatwood soils. Journal of Plant Nutritionhttps://doi.org/10.1080/01904167.2023.2221287
  20. Lesmes-Vesga, R.A.; Cano, L.M.; Chaparro, J.X.; Ritenour, M.A.; Sarkhosh, A.; Rossi, L. 2023. Variation in the root system architecture of peach × (peach × almond) backcrosses. Plants 12(9), 1874; https://doi.org/10.3390/plants12091874
  21. Santiago, J.M.; Kadyampakeni, D.M.; Fox, J.-P.; Wright, A.L.; Guzman, S.M.; Ferrarezi, R.S.; Rossi, L. 2023. Grapefruit root and rhizosphere responses to varying planting densities, fertilizer concentrations and application methods Plants 12(8), 1659; https://doi.org/10.3390/plants12081659
  22. Ayub, M.A.; ur Rehman, M.Z.; Ahmad, H.R.; Rico, C.M.; Abbasi; G.H.; Umar; W.; Wright, A.L.; Nadeem, M.; Fox, J.-P.; Rossi, L. 2023. Divergent effects of cerium oxide nanoparticles alone and in combination with Cd on nutrient acquisition and growth of maize (Zea mays). Frontiers in Plant Science. Vol. 14; https://doi.org/10.3389/fpls.2023.1151786  
  23. Santiago, J.M.; Fox, J.-P.; Guzmán, S.M.; Rossi, L. 2023. Effect of fabric mulch ground covers on lemon trees rhizosphere microbiome in Florida flatwood soils. Frontiers in Soil Sciences. Vol. 3; https://doi.org/10.3389/fsoil.2023.1110370
  24. Ayub, M.A.; ur Rehman, M.Z.; Ahmad, H.R.; Fox, J.-P.; Clubb, P.; Wright, A.L.; Anwar-ul-Haq, M.; Nadeem, M.; Rico, C.M.; Rossi, L. 2023. Influence of ionic cerium and cerium oxide nanoparticles on Zea mays seedlings grown with and without cadmium. Environmental Pollution 322: 121137; https://doi.org/10.1016/j.envpol.2023.121137
  25. Hallman, L.M.; Kadyampakeni, D.M.; Fox, J.-P.; Wright, A.L.; Rossi L. Root-Shoot nutrient dynamics of huanglongbing-affected grapefruit trees. Plants 11(23), 3226; https://doi.org/10.3390/plants11233226
  26. Martin-Zapien, J.M.; Castle, W.S.; Gmitter, F.G.; Grosser, J.W.; Ferrarezi, R.S.; Rossi, L. 2022. Early performance of recently released rootstocks with grapefruit, navel orange, and mandarin scions under endemic huanglongbing conditions in Florida. Horticulturae 8(11), 1027; https://doi.org/10.3390/horticulturae8111027
  27. Hallman, L.M.; Kadyampakeni, D.M.; Ferrarezi, R.S.; Wright, A.L.; Ritenour, M.A.; Johnson, E.G.; Rossi, L. Impact of ground applied micronutrients on root growth and fruit yield of severely huanglongbing-affected grapefruit trees. Horticulturae 8(9), 763; https://doi.org/10.3390/horticulturae8090763
  28. Arnoldi, M.; Duren E.B.; Avery, P.B.; Rossi, L. Assessing the endophytic potential of a commercially available entomopathogenic Beauveria bassiana strain in various citrus rootstocks. Applied Microbiology 2(3), 561-571; https://doi.org/10.3390/applmicrobiol2030044
  29. Lesmes-Vesga, R.A.; Cano, L.M.; Ritenour, M.A.; Sarkhosh, A.; Chaparro, J.X.; Rossi L. 2022. Rhizoboxes as rapid tools for the study of root systems of Prunus seedlings. Plants 11(16), 2081; https://doi.org/10.3390/plants11162081
  30. Lesmes-Vesga, R.A.; Cano, L.M.; Ritenour, M.A.; Sarkhosh, A.; Chaparro, J.X.; Rossi, L. 2022. Rootstocks for commercial peach production in the southeastern United States: current research, challenges, and opportunities. Horticulturae 8(7), 602; https://doi.org/10.3390/horticulturae8070602
  31. Rossi L., Hallman L.M., Santiago J.M. 2021. Citrus root and rhizosphere dynamics in the age of HLB. Annual Plant Review online: 4(2) 605-624 https://doi.org/10.1002/9781119312994.apr0769
  32. Lesmes-Vesga R.A., Chaparro J.X., Sarkhosh A., Ritenour M.A., Cano L.M., Rossi L. 2021. Effect of propagation systems and indole-3-butyric acid potassium salt (K-IBA) concentrations on the propagation of peach rootstocks by stem cuttings. Plants 10(6), 1151; https://doi.org/10.3390/plants10061151
  33. Hoffman W.A., Rodrigues A.C., Uncles N., Rossi L. 2021. Hydraulic segmentation does not protect stems from acute water loss during fire. Tree Physiology, https://doi.org/10.1093/treephys/tpab057
  34. Chang Y., Rossi L., Zotarelli L., Gao B., Sarkhosh A. 2021. Biochar improves soil physical characteristics and strengthen root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture. https://doi.org/10.1186/s40538-020-00204-5
  35. Chang Y., Rossi L., Zotarelli L., Gao B., Sarkhosh A. 2021. Greenhouse Evaluation of Biochar Effect on Nutrient Status and Physiological Performance in Muscadine Grape (Vitis rotundifolia L.). HortSciencehttps://doi.org/10.21273/HORTSCI15428-20
  36. Doherty E., Avery P., Duren E., Cano L., Rossi L. 2021. In planta Localization of Endophytic Cordyceps fumosorosea in Carrizo Citrus. Microorganismshttps://doi.org/10.3390/microorganisms9020219
  37. Fox J.-P., Capen J., Zhang W., Ma X., Rossi L. 2020. Effects of cerium oxide nanoparticles and cadmium on corn (Zea mays L.) seedlings physiology and root anatomy. NanoImpacthttps://doi.org/10.1016/j.impact.2020.100264
  38. Rossi L., Hallman L., Adams N., Ac-Pangan W. 2020. Impact of a Soil Conditioner Integrated into Fertilization Scheme on Orange and Lemon Seedling Physiological Performances. Plants 20209(7), 812; https://doi.org/10.3390/plants9070812
  39. Shahid M., Sarkhosh A., Khan N., Balal R., Ali S., Rossi L., Gómez C., Mattson N., Nasim W., Garcia-Sanchez F. 2020. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy 2020, 10(7), 938; https://doi.org/10.3390/agronomy10070938
  40. Pitino M., Sturgeon K., Dorado C., Cano L.M., Manthey J.A., Shatters R.G., Rossi L. 2020. Quercus leaf extracts display curative effects against Candidatus Liberibacter asiaticus that restore leaf physiological parameters in HLB-affected citrus trees. Plant Physiology and Biochemistry, DOI: https://doi.org/10.1016/j.plaphy.2020.01.013
  41. Lombardini L., Rossi L. 2019. Ecophysiology of Plants in Dry Environments. In: D’Odorico P., Porporato A., Wilkinson Runyan C. (eds) Dryland Ecohydrology. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-23269-6_4
  42. Adams S., Ac-Pangan, W., Rossi L. 2019. Effects of Soil Salinity on Citrus Rootstock ‘US-942’ Physiology and Anatomy. HortScience https://doi.org/10.21273/HORTSCI13868-19
  43. Rossi L., Bagheri M., Zhang W., Burken J., Ma X. 2019. Using the Artificial Neural Network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake in Brassica napus Environmental Pollutionhttps://doi.org/10.1016/j.envpol.2018.12.029
  44. Rossi L., Fedania L., Sharifan H., Ma X., Lombardini L. 2019. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants, Plant Physiology et Biochemistry, DOI: https://doi.org/10.1016/j.plaphy.2018.12.005
  45. Shahid M.A., Balal R.M., Khan M.N., Rossi L., Rathinasabapathi B., Liu G., Khane J., Cámara-Zapata J.M., Martínez-Nicolas J.J., Garcia-Sanchez F. 2018. Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environmental and Experimental Botany, DOI: https://doi.org/10.1016/j.envexpbot.2018.09.015
  46. Rossi L., Cao Z., Stowers C., Zhang W., Lombardini L., Ma 2018. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture contents. Environmental Science and Pollution Research, DOI: https://doi.org/10.1007/s11356-017-0501-5
  47. Rossi L., Sharifan H., Zhang W., Ma X. Mutual effects and in-planta speciation of cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environmental Science: Nano, DOI: 10.1039/C7EN00931C
  48. Stower C., King M., Rossi L., Zhang W., Ma X. 2018. Initial sterilization of soil affected the interactions of cerium oxide nanoparticles and soybean seedlings (Glycine max (L.) Merr.) in a greenhouse study. ACS Sustainable Chemistry & Engineering, DOI: 1021/acssuschemeng.8b01654
  49. Cao Z., Stowers C., Rossi L., Zhang W., Lombardini L., Ma 2017. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environmental Science: Nano, DOI: 10.1039/C7EN00015D
  50. Rossi L., Zhang W., Ma X. 2017. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus by modifying the formation of root apoplastic barriers. Environmental pollution, DOI: https://doi.org/10.1016/j.envpol.2017.05.083.
  51. Rossi L., Borghi M., Yang J., Xie D. Overexpression of Populus × canescens isoprene synthase gene in Camelina sativa leads to alterations in its growth and metabolism. Journal of Plant Physiology, DOI: https://doi.org/10.1016/j.jplph.2017.06.005
  52. Rossi L., Zhang W., Schwab A., Ma X. Uptake, accumulation and in-planta distribution of co-existing cadmium and cerium oxide nanoparticles in Glycine max (L.) Merr. Environmental Science & Technology, DOI: 10.1021/acs.est.7b03363
  53. Xi J., Rossi L., Lin X., Xie D. Metabolic conversion of isoprene wasted by Camelina sativa to plant growth and storage metabolites via a synthetic insect-plant geranyl diphosphate synthase gene. Planta, DOI:10.​1007/​s00425-016-2504-8
  54. Ma X., Wang Q., Rossi L., Ebbs SD., White JC. Multigenerational exposure to cerium oxide nanoparticles: Physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapaNanoimpact, DOI: http://dx.doi.org/10.1016/j.impact.2016.04.001
  55. Rossi L., Borghi M., Francini A., Lin X., Xie D., Sebastiani L. Salt stress induces metabolic and gene-expression changes in salt-tolerant and salt-sensitive Italian olive trees (Olea europea L.) cultivars. Journal of Plant Physiology, http://dx.doi.org/10.1016/j.jplph.2016.07.014
  56. Rossi L., Zhang W., Lombardini L., Ma X. 2016. Cerium oxide nanoparticles alleviated salt stress in Brassica napus by enhancing photosynthetic mechanisms. Environmental Pollution, DOI: http://dx.doi.org/10.1016/j.envpol.2016.09.060
  57. Rossi L., Francini A., Minnocci A., Sebastiani L. Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar. Scientia Horticulturae 192: 38-46, DOI: 10.1016/j.scienta.2015.05.023
  58. Ma X., Wang Q., Rossi L., Zhang W. Cerium oxide nanoparticles and bulk cerium oxide lead to different physiological and biochemical adjustments in Brassica rapaEnvironmental Science & Technology, DOI: 10.1021/acs.est.5b04111
  59. Rossi L., Sebastiani L., Tognetti R., D’andria R., Morelli G., Cherubini P. Different irrigation regimes induce changes in vessel sizes in olive trees (Olea europaea L.) from Southern Italy. Acta Horticulturae 1038: 455-461. DOI: http://dx.doi.org/10.17660/ActaHortic.2014.1038.56
  60. Rossi L., Sebastiani L., Tognetti R., D’andria R., Morelli G., Cherubini P. Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive tree under different water availability. Plant and Soil, 372: 567-579, DOI: 10.1007/s11104-013-1759-0